Ion channel regulation by protein S-acylation
نویسندگان
چکیده
منابع مشابه
Ion channel regulation by protein S-acylation
Protein S-acylation, the reversible covalent fatty-acid modification of cysteine residues, has emerged as a dynamic posttranslational modification (PTM) that controls the diversity, life cycle, and physiological function of numerous ligand- and voltage-gated ion channels. S-acylation is enzymatically mediated by a diverse family of acyltransferases (zDHHCs) and is reversed by acylthioesterases....
متن کاملIon Channel Regulation by Protein Palmitoylation*
Protein S-palmitoylation, the reversible thioester linkage of a 16-carbon palmitate lipid to an intracellular cysteine residue, is rapidly emerging as a fundamental, dynamic, and widespread post-translational mechanism to control the properties and function of ligand- and voltage-gated ion channels. Palmitoylation controls multiple stages in the ion channel life cycle, from maturation to traffi...
متن کاملS-acylation by the DHHC protein family.
A family of 23 DHHC (Asp-His-His-Cys) proteins that function as mammalian S-acyltransferases has been identified, reinvigorating the study of protein S-acylation. Recent studies have continued to reveal how S-acylation affects target proteins, and have provided glimpses of how DHHC-substrate specificity might be achieved.
متن کاملS-acylation regulates Kv1.5 channel surface expression.
The number of ion channels expressed on the cell surface shapes the complex electrical response of excitable cells. An imbalance in the ratio of inward and outward conducting channels is unfavorable and often detrimental. For example, over- or underexpression of voltage-gated K(+) (Kv) channels can be cytotoxic and in some cases lead to disease. In this study, we demonstrated a novel role for S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of General Physiology
سال: 2014
ISSN: 1540-7748,0022-1295
DOI: 10.1085/jgp.201411176